Time-space-optimal string matching

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time String Matching in Sublinear Space

We study a problem of efficient utilisation of extra memory space in real-time string matching. We propose, for any constant " > 0, a real-time string matching algorithm claiming O(m") extra space, where m is the size of a pattern. All previously known real-time string matching algorithms use (m) extra

متن کامل

Simple Real-Time Constant-Space String Matching

We use a simple observation about the locations of critical factorizations to derive a real-time variation of the Crochemore-Perrin constant-space string matching algorithm. The real-time variation has a simple and efficient control structure.

متن کامل

Average-optimal string matching

The exact string matching problem is to find the occurrences of a pattern of length m from a text of length n symbols. We develop a novel and unorthodox filtering technique for this problem. Our method is based on transforming the problem into multiple matching of carefully chosen pattern subsequences. While this is seemingly more difficult than the original problem, we show that the idea leads...

متن کامل

Optimal Packed String Matching

In the packed string matching problem, each machine word accommodates α characters, thus an n-character text occupies n/α memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/α) time and even in real-time, achieving a factor α speedup over traditional algorithms that examine each character individually. Our solution can be efficie...

متن کامل

Improved Time and Space Complexities for Transposition Invariant String Matching

Given strings A = a1a2 . . . am and B = b1b2 . . . bn over a finite alphabet Σ ⊂ Z of size O(σ), and a distance d() defined among strings, the transposition invariant version of d() is d t(A,B) = mint∈Z d(A+t, B), where A+t = (a1+t)(a2+t) . . . (am+t). Distances d() of most interest are Levenshtein distance and indel distance (the dual of the Longest Common Subsequence), which can be computed i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer and System Sciences

سال: 1983

ISSN: 0022-0000

DOI: 10.1016/0022-0000(83)90002-8